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therapeutic implications in SCN2A-related
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Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Na,1.2, have been associated with a spectrum of
epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported
patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (>3 months of age) occur almost as often as
those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can
be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West
syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients);
and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four
previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal
seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively
reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was
available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure
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freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast,
sodium channel blockers were rarely effective in epilepsies with later onset (>3 months) and sometimes induced seizure worsening.
Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of
response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-
clamping in tsA201 cells—together with data from the literature—suggest that mutations associated with early infantile epilepsy
result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its
recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be
associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient
response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-de-
pendent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data
suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations
in children with SCN2A-related epilepsy.
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SCN2A: phenotypes and treatment

Introduction

The SCN2A gene encodes the voltage-gated sodium chan-
nel Na,1.2, one of the major neuronal sodium channels
that play a role in the initiation and conduction of action
potentials. Na,1.2 is expressed in axon initial segments and
nodes of Ranvier of myelinated nerve fibres in early devel-
opment, and in the adult brain in the axon initial segment
and unmyelinated axons (Boiko et al., 2001, 2003; Kaplan
et al., 2001; Liao et al., 2010b). Accordingly, SCN2A mu-
tations have been mainly shown to affect the early devel-
opmental period (Catterall, 2014), but some mutations
have also been found as causes of later onset neurological
diseases (Kobayashi et al., 2012; Horvath et al., 2016), or a
combination of both (Schwarz et al., 2016).

Since the first description of a patient with epilepsy caused
by a SCN2A mutation and the findings of SCN2A mutations
in benign (familial) neonatal/infantile seizures [B(F)NIS]
(Sugawara et al., 2001; Heron et al., 2002), the phenotypic
spectrum has expanded considerably. In particular, severe
phenotypes with encephalopathy have been reported, includ-
ing distinct epileptic syndromes such as Ohtahara syndrome
(Nakamura et al., 2013; Allen ez al., 2016), epilepsy of in-
fancy with migrating focal seizures (EIMFS) (Howell ez al.,
2015), infantile spasms (Ogiwara et al., 2009; Wong et al.,
2015) or West syndrome (Allen et al., 2013; Nakamura et al.,
2013), as well as patients with unclassified severe epilepsy
phenotypes. However, SCN2A mutations have also been
found in patients with intellectual disability and/or autistic
features without epilepsy, suggesting the possible involvement
of the gene in the aetiology of autism spectrum disorders
(Sanders et al., 2012; Li et al., 2016).

To date, the mechanisms for the phenotypic heterogen-
eity, ranging from benign to very severe clinical presenta-
tions, are poorly understood. Differences in functional
effects of the mutations may account at least in part for
the phenotypic diversity. In addition, the efficacy of anti-
epileptic drugs (AEDs), especially of sodium channel block-
ers (SCBs), could be influenced by the way in which specific
SCN2A mutations affect Na,1.2 activity.

Therefore, we aimed to assess systematically the pheno-
typic spectrum and treatment effects in a large cohort of
SCN2A-related disorders comprising 201 patients, 71 of
whom were not reported previously. For some missense
mutations that we selected based on specific clinical find-
ings, and supported by previous reports from the literature,
we were able to correlate phenotype and treatment re-
sponses to the specific biophysical effects of the mutations.

Materials and methods

Previously unpublished patients

Seventy-one previously unreported patients with a SCN2A mu-
tation were included in this study. Patients were referred
through a network of collaborating clinicians and geneticists.

BRAIN 2017: 140; 1316-1336 | 1319

Mutations in SCN2A were identified in research or diagnostic
laboratories and assumed to be pathogenic, if they were non-
synonymous, splice-site altering, nonsense or frameshift
changes, predicted damaging by one or more prediction soft-
ware (PolyPhen-2, SIFT and MutationTaster), seen less than
twice in >60000 controls in the exome aggregation consor-
tium browser (exac.broadinstitute.org), and either occurred de
novo, or were inherited from an affected parent, an unaffected
mosaic parent or previously reported as pathogenic in other
patients. Sanger sequencing was used to confirm all mutations
and perform segregation analysis. The study was approved by
the local ethics committees.

Referring physicians were provided with a standardized phe-
notyping sheet to assess clinical characteristics, EEG, and neu-
roimaging findings. Seizures were diagnosed according to the
International League Against Epilepsy commission on classifi-
cation (Berg et al., 2010), and were assigned, whenever pos-
sible, to defined epileptic syndromes. Data on cognitive
development and neurological features were recorded at age
at onset and at last evaluation. Based on the presence and
severity of epilepsy, cognitive status and age at onset of epi-
lepsy patients were classified into the following groups: (i)
B(F)NIS, defined as neonatal/infantile onset seizures with a
seizure offset during infancy/early childhood, and/or auto-
somal-dominant inheritance, and normal cognitive develop-
ment; (i) encephalopathy with early infantile epilepsy,
defined as seizure onset before the age of 3 months, and im-
paired cognitive development; (iii) encephalopathy with infant-
ile/childhood epilepsy, defined as seizure onset at the age of at
least 3 months, and impaired cognitive development; and (iv)
intellectual disability and/or autism without epilepsy.

Antiepileptic treatment data were retrospectively assessed by
standardized questionnaires. The effect on seizures was classi-
fied according to the judgement of the treating physicians into
seizure freedom, seizure reduction, no effect or seizure worsen-
ing. Particular attention was given to the effects of SCBs,
defined as AEDs that reduce the activity of sodium channels
by stabilizing an inactivated state. SCBs included phenytoin,
carbamazepine, oxcarbazepine, lacosamide, lamotrigine and
zonisamide. To provide a general overview in our retrospective
analysis, we specifically assessed whether patients were on an
SCB by the time that seizure reduction, seizure freedom, or
aggravation of seizures occurred.

Frequency of SCN2A-related
disorders

To estimate the frequency of SCN2A mutations causing the
reported phenotypes in the general population, we used the
electronic population databases of National Statistics at the
Statens Serum Institute (Denmark) to calculate the birth
cohort from 2007 to 2014. The Danish Epilepsy Centre is
the only tertiary hospital in Denmark specialized in the
treatment of epilepsy, and the majority of patients with pre-
sumed genetic epilepsy are referred to this centre for genetic
testing.

Literature review

We searched PubMed using the term ‘SCN2A’ and included all
relevant patient-related information in our SCN2A dataset.
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Last search date was 1 June 2016. Papers not available in
English, Italian or Danish were excluded. Cases with deletions
and duplications spanning SCN2A as well as neighbouring
genes were excluded. For patients with little or no clinical in-
formation, we listed the phenotype mentioned in the respective
publication.

Mutagenesis

To engineer the mutations into the adult splice variant of the
human Na,1.2 channel, site-directed mutagenesis was per-
formed using Quickchange” II XL (Agilent Technologies; pri-
mers are available upon request) as described previously
(Schwarz et al., 2016). Transfection of the a-subunit together
with pCLH-hB1-EGFP and pCLH-hf2-CD8 in tsA201 cells
using Mirus TransIT -LT1 reagent was performed in a stand-
ard way as described previously (Liao ez al., 2010a; Lauxmann
et al., 2013; Schwarz et al., 2016).

Electrophysiology

Standard whole-cell patch clamp recordings were performed
using an Axopatch 200B amplifier, a Digidata 1320A digitizer
and pCLAMP 8 data acquisition software (Axon Instruments),
as described before (Schwarz et al., 2016). Borosilicate glass
pipettes had a final tip resistance of 1-2 MQ when filled with
internal recording solution containing (in mM): 130 CsF, 5
NaCl, 2 MgCl,, 5 EGTA, HEPES (pH 7.4, 290 mOsm). The
bath solution contained (in mM): 140 NaCl, 4 KCl, 1 MgCl,,
2 CaCl,, 5 HEPES, 4 dextrose (pH 7.4, 300 mOsm). We care-
fully checked that the maximal voltage error due to residual
series resistance after up to 95% compensation was always
<5mV. Voltage clamp protocols to study channel kinetics
were performed as described previously (Schwarz et al.,
2016) and are provided in detail in the Supplementary
material.

Data and statistical analysis

Traces were displayed off-line with Clampfit software of
pClamp 10.0 (Axon Instruments). Graphics were generated
using a combination of Microsoft Excel, and Origin (version
9.1; OriginLab Inc., USA) software, statistics were performed
using SigmaStat 3.1 (Systat Software GmbH, Germany). All
data were tested for normal distribution. For statistical evalu-
ation, ANOVA on ranks (Kruskal-Wallis-test) with Dunn’s
post hoc test for not normally distributed data or one-way
ANOVA (Bonferroni post hoc test) was used when datasets
were normally distributed. All data are shown as
means =+ standard error of the mean (SEM), n gives the
number of cells. We applied the x* test to estimate the signifi-
cance of the differences in AED treatment effects in the two
groups of epilepsy with encephalopathy with early and late
onset.

Results

In the present study, we report 71 unpublished patients
with pathogenic SCN2A mutations and review the pheno-
types of 130 previously reported ones (see Tables 1-4,

M. Wolff et al.

Supplementary Table 1 and Supplementary Fig. 1). The
distribution of phenotypes of the 66 previously unpublished
patients with epilepsy and of the total number of patients
are displayed in Fig. 1.

Phenotypic features

Benign (familial) neonatall/infantile seizures

We identified nine unpublished patients (Table 1) and 24
probands from the literature with B(F)NIS due to a SCN2A
mutation, as well as 109 mutation-positive family members
(Berkovic et al., 2004; Striano et al., 2006; Herlenius et al.,
2007; Heron et al., 2010; Liao et al., 2010b; Lemke et al.,
2012; Lauxmann et al., 2013; Zara et al., 2013; Grinton
et al., 2015; Johannesen et al., 2016; Schwarz et al., 2016).
The mutations occurred de novo in 6/33 of the probands.
Age at seizure onset ranged from the first day of life to 23
months. Approximately half of the children had seizure
onset within the first month of life. Seizure types were pre-
dominantly focal clonic, tonic, and generalized tonic-clonic,
frequently occurring in clusters. Interictal EEG showed
mostly focal or multifocal spikes, but was normal in
some cases. All children became seizure-free at a median
age of 5 months (range 5 days to 2 years), and remained
seizure-free with normal cognitive development until last
follow-up at a median age of 5.5 years (range 7 months
to 34 years, data available from 28 cases). A single pro-
band developed a second epilepsy phenotype during later
childhood with marked activation of multifocal spikes
during sleep and partial cognitive deterioration, resembling
electrical status epilepticus during slow sleep (ESES), and
two had isolated seizures until the age of 2 and 14 years,
respectively. Five children with two recurrent mutations
(A263V and R1882G) exhibited episodic ataxia later in
life (Liao et al., 2010a; Johannesen et al., 2016; Schwarz
et al., 2016).

Encephalopathy with early infantile epilepsy

Twenty-eight new patients (Table 2) and 43 previously
published ones (Ogiwara et al., 2009; Dhamija et al.,
2013; Nakamura et al, 2013; Touma et al, 2013;
Baasch et al., 2014; Martin et al., 2014; Matalon et al.,
2014; Zerem et al., 2014; Fukasawa et al., 2015; Howell
et al., 2015; Allen et al., 2016; Trump et al., 2016) had
epilepsy onset within the first 3 months of life. Thirty-one
had an identifiable epilepsy syndrome, i.e. Ohtahara syn-
drome (18 cases) or EIMFS (13 cases). The remaining 40
patients had unclassifiable epilepsies. The predominant seiz-
ure types in these were focal, tonic, and tonic-clonic seiz-
ures or spasms. Initial EEGs showed a suppression burst
pattern in 25 cases (18 with Ohtahara syndrome, two with
EIMFS, and five with unclassifiable epilepsies), and multi-
focal spikes in the majority of the remaining cases.
Regardless of the epileptic syndrome, all patients fulfilled
the criteria of encephalopathy as they had intellectual dis-
ability, being severe in 54/71 cases. Six children had autism
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Figure | Distribution of patients according to phenotype and age at epilepsy onset. (A) Epilepsy phenotypes in the previously
unpublished cohort (n = 66). ‘Patients with Lennox-Gastaut syndrome’ refers to patients with Lennox-Gastaut syndrome not evolving from West
syndrome. (B) Phenotypes in the overall cohort (n =201). LGS = Lennox-Gastaut syndrome; MAE = myoclonic-atonic epilepsy; OS = Ohtahara

syndrome; WS = West syndrome.

spectrum disorder. Additional features included muscular
hypotonia (17 = 32), microcephaly (n = 15), marked dystonic
or choreatic movement disorders (1 = 8), spasticity (7 = 3),
or dysautonomia (7 =35). Seven patients in this subgroup
were deceased at time of follow-up, and causes of death
included severe infections and status epilepticus.

Encephalopathy with infantile/childhood epilepsy

This group included 29 unpublished (Table 3) and 29 pre-
viously published patients (Haug er al., 2001; Sugawara
et al., 2001; Kamiya et al., 2004; Ogiwara et al., 2009;
Shi et al., 2009; Kobayashi et al., 2012; Allen et al.,
2013; Nakamura et al., 2013; Sundaram et al., 2013;
Hackenberg et al., 2014; D’Gama et al., 2015; Howell
et al, 2015; Mercimek-Mahmutoglu et al, 2015;

Samanta and Ramakrishnaiah, 2015; Wong ez al., 2015;
Dimassi et al., 2016; Horvath et al., 2016). Sixteen pre-
sented with West syndrome or infantile spasms, which
evolved into Lennox-Gastaut syndrome in 5/16 patients.
Two cases were diagnosed as Dravet syndrome, two as
Lennox-Gastaut syndrome and two as myoclonic-atonic
epilepsy. The majority of the remaining patients with seiz-
ure onset after 3 months of age had unclassifiable epilepsies
mainly with generalized seizure types including generalized
tonic-clonic (15/36, occurring in clusters in four), absence
(n=12) and myoclonic seizures (7z=38). EEG showed
mainly generalized spikes and waves or multifocal spikes.
Interestingly, four patients with unclassifiable epilepsies
(Patients 41, 61, 62 and 65) and one patient (Patient 50)
with West syndrome showed an ESES-like marked
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activation of spikes and waves during sleep, prompting
AED treatment to reduce spike-wave activity in order to
prevent ESES-induced neuropsychological sequelae.
Cognition before seizure onset varied from normal to
severely delayed, and was reported abnormal during
follow-up in all cases, with severe cognitive impairment
in 35/58. Autism spectrum disorder was found in 18
children. Additional features included muscular hypo-
tonia (7 = 16) and marked choreatic or dyskinetic move-
ment disorder in six patients.

Encephalopathy with unspecified onset of epilepsy
In 10 of the previously published patients (Need et al.,
2012; Wang et al., 2012; Carvill et al., 2013; Saitoh
et al., 2015; Li et al., 2016), data were limited, and
age at seizure onset was not available. One case was
classified as Lennox-Gastaut syndrome, the others as
encephalopathies with epilepsy that were not further
characterized.

Intellectual disability and/or autism without
epilepsy

This subgroup consisted of patients with a verified
SCN2A mutation, but no signs of epileptic seizures.
Five unpublished (Table 4) and 27 previously published
cases fulfilled these criteria (Weiss et al., 2003; Rauch
et al., 2012; Sanders et al., 2012; Jiang et al., 2013;
Tavassoli et al., 2014; Codina-Sola et al., 2015;
D’Gama et al., 2015; Carroll et al., 2016; Li et al.,
2016). The unpublished cases, aged 4 to 13 years, ex-
hibited autism with moderate to severe intellectual dis-
ability. From the previously published individuals, 14
had autism, nine had intellectual disability without
autism, and four had schizophrenia.

Estimated frequency of SCN2A
mutations in the Danish population

Via the electronic population databases of National
Statistics at the Statens Serum Institute (Denmark), we
calculated the birth cohort from 2006-14, giving
550261 births. In the same period at least seven
Danish children with an SCN2A mutation causing the
reported phenotypes were born, making a total min-
imum frequency of approximately 1/78 608 births.

Seizure outcome and treatment
effects

Antiepileptic treatment effects on seizures were analysed
in all unpublished patients with epilepsy for which suf-
ficiently detailed clinical information was available
(n = 66, Tables 1-4). Besides classical AEDs, corticoster-
oids or adrenocorticotropic hormones (ACTH) were
tried in 19 children, ketogenic diet in 13, vagal nerve
stimulation in three, and immunoglobulins in one.
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SCN2A: phenotypes and treatment

Benign (familial) neonatal/infantile seizures

All children became seizure-free at a median age of 3
months (range: 5 days to 2 years). All but one remained
seizure-free until last follow-up at a median age of 20
months (range: 14 months to 11 years) (7 =9, Table 1).
Patient 4 developed an ESES-like picture at the age of 8
years, and became seizure-free again at the age of 10 years.
Seizures stopped spontaneously in three patients, and with
AED treatment in six. The sequence of events strongly sug-
gested that seizure freedom was reached by treatment and
not by natural history in those cases. Phenytoin was effect-
ive in two patients, oxcarbazepine in two, zonisamide in
one and clobazam in one. Initial AED treatment failed in
seven cases, and six received more than two AEDs (mean
4.3) before the seizures stopped.

Encephalopathy with early infantile epilepsy with
onset younger than 3 months

Seizure freedom has so far been achieved during the first
year of life in 11 children, and during childhood in another
six (median observation period after seizure freedom: 2.5
years, range 1 month to 18 years) (n=28, Table 2).
Effective AEDs in terms of seizure freedom included pheny-
toin (n=8), ACTH (n=2), and carbamazepine, lacosa-
mide, vigabatrin, topiramate as well as a combination of
lamotrigine, valproate and levetiracetam in single cases
each. One child with Ohtahara syndrome (Patient 11)
and one with EIMFS (Patient 23) became rapidly seizure-
free after application of phenytoin at the age of 1 and 3
months, respectively, and the burst suppression pattern on
EEG disappeared. In Patient 23, low plasma levels of
phenytoin (<13 mg/l) resulted in seizure relapse on several
occasions. With a high dosage of phenytoin (15 mg/kg/d,
divided in three daily doses) higher phenytoin serum levels
were obtained, and seizure freedom was finally achieved. A
switch to high dose carbamazepine (45 mg/kg/d) was suc-
cessful during follow-up. Seizure relapses due to low pheny-
toin plasma levels were also seen on several occasions in
Patient 11 and three other children (Patients 15, 25 and 35)
during follow-up. Patient 26 showed prompt resolution of
burst suppression pattern and temperature instability with
phenytoin, but had ongoing seizures although with mark-
edly reduced frequency. AED-related seizure reduction was
evident in another 16 cases, most frequently with topira-
mate (7 = 6), phenytoin (7 = 3), and carbamazepine (n = 4).
Ineffective AEDs included phenobarbital (1 = 18), levetira-
cetam (n = 17), topiramate (n = 13), and valproate (7= 11)

(Fig. 2A and Table 2).

Encephalopathy with infantile/childhood epilepsy
with onset at 3 months or older

Ten children became seizure-free during follow-up (median
observation period after seizure freedom: 3.5 years, range 1
month to 16 years) (n =29, Table 3). Eight of nine patients
with West syndrome were resistant to treatment, including
steroids or ACTH in six. One child (Patient 46) responded
to ACTH, but later developed drug-resistant Lennox-
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Gastaut syndrome. Among the patients with other epilepsy
phenotypes, different AEDs were effective in single cases
each, including levetiracetam (7 =2) and valproate (n = 2).
Seizure reduction occurred most frequently with levetirace-
tam (n = 9), benzodiazepines (n = 9), and valproate (1 = 7).
Ineffective AEDs included lamotrigine (17 = 10), valproate
(n=10), phenobarbital (7=9), and topiramate (n=9).
Drug-induced aggravation of seizures occurred in seven
children with carbamazepine (7 =3), oxcarbazepine
(n=2), phenytoin, lamotrigine and rufinamide, and
remitted after discontinuation of the respective AED (see
also Fig. 2B and Table 3). Atypical absences were the pre-
dominant seizure types in these. In a boy with myoclonic-
atonic epilepsy (Patient 52), the frequency of drop attacks
and tonic seizures increased markedly after introduction of
oxcarbazepine, and lamotrigine provoked episodes of status
epilepticus.

Response to sodium channel blocker versus non-
sodium channel blocker treatment

We tested the significance of effects of SCBs versus non-
SCBs on seizure outcome of patients with encephalopathy
and epilepsy with onset <3 months and >3 months by
applying a x> test (Supplementary Table 3). Treatment with
phenytoin and carbamazepine or with all SCBs considered
together showed a significantly better response for patients
with onset of epilepsy <3 months than for those with
onset >3 months (P < 0.01 and P < 0.001, respectively).
In contrast, patients with epilepsy onset >3 months re-
sponded significantly better to non-SCBs (P < 0.001).

Impact of the genetic diagnosis on treatment
decisions

In most patients, genetic diagnosis was only made late
during follow-up and had no impact on treatment deci-
sions, because patients were already seizure-free or many
AEDs had been tried before. In some cases, however, sus-
picion or confirmation of a mutation in SCN2A led to
specific treatment trials with SCBs: three children (Patients
15, 23 and 25) with severe early onset epilepsies and one
(Patient 2) with de novo BNIS became seizure-free with
phenytoin, and three children with severe early onset
EIMEFS (Patients 26 and 30) or Ohtahara syndrome
(Patient 33) showed partial responses to some SCBs,
whereas other types of AEDs had failed before. In contrast,
three children with late onset epilepsies (Patients 39, 40 and
41) showed no effect on SCB trials.

Genetic findings

Mutations were missense in all children with B(F)NIS or
encephalopathies with epilepsy onset <3 months. The ma-
jority of the missense mutations (both inherited and de
novo) affects highly evolutionarily conserved amino acids
and no obvious correlation between the position of the
mutation and the severity of the associated phenotype
was observed. In the subgroup of infantile/childhood
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Table 3 Continued

Treatment effects

Seizure

Age
at last

Additional

MRI Cognition Neurological

EEG

Initial Other

Epilepsy
at seizure syndrome seizure

Age

Patient Mutation/

features outcome

features

seizure onset

types

inheritance

No effect Wors-

Sz

Seizure-
free

ening

reduction

follow-up (offset: age)

[follow-up

type

onset

others

TPM

Sz free (9 y)

10y

N

N/MID

f spikes—MF, ESES- N

4y 6m  Other F

c.698-1G>T,

62

CBZ

PB

VPA

Sz free (9 y)

Psychosis (17 y) 25y

N

MD/MD

like—N
Gen SW

Febrile T AA

Other

site/de novo
WI716/de novo 4y 7 m

splice

63

(cluster)

TES

VPA

20y Sz free (6 y)

ASD

SD/SD

N

Bil sharp waves

Other

N503Kfs"19/de

64

(cluster)

novo*
W281 /de novo

Sz free (10'y) ST

13y

Clumsiness

sec. Gen. MF spikes—ESES- N MD/MD

F

Other

7y

65

like
Bifr SW, slowing

TCS
AA

TTPM

LLTG, VPA

MD/MD  Hypotonia, Agitation 12y Intractable

N

LGS GTC

S1656F/de novo 8y Il m

66

crouched gait

atrophy; Bifr = bifrontal; Bil = bilateral; C = clonic; CC = corpus callosum;

autonomic seizures; AP = apneic seizures; At =
frontal; Gen = generalized; GTC

MAE
non-convulsive status epilepticus; Occ = occipital; Par = parietal; R = right; S = spasms; SE = status epilepticus; SD = severe intellectual

atonic; AB = absences; ADS = attention deficit disorder; ASD = autism spectrum disorder; AU =

atypical absences; A =

AA

hippocampal sclerosis;

hemiclonic; HiS =

hypsarrhythmia; HC

generalized tonic-clonic; HA =

drop attacks; ED = epileptiform discharges; F = focal; FD = focal dyscognitive; FC = febrile convulsion; fr =

Ce = central; DA

HM
M

moderate intellectual disability;

mild intellectual disability; MD

months; MID =

myoclonic-atonic epilepsy; m

myoclonic-atonic seizures; =

Lennox-Gastaut syndrome; MAS

left; LGS
multifocal; N = normal; NA = not applicable; NAV = not available; NCSE

infantile spasms; L
microcephaly; MF

hypomyelination; IS

myoclonic; MC

= years;— = change to.

West syndrome; y

week; WS

bromide; CBZ = carbamazepine; CLB = clobazam; CLZ = clonazepam; CS = corticosteroids; ESM = ethosuximide; FBM = felbamate;

T,-hyperintensities; TCS = tonic-clonic seizures; Te = temporal; w

tonic; T2H

Treatment (sodium channel blockers are highlighted in bold): AZA = acetazolamide; Bé = vitamin B6; BR

GBP
PP

seizures; T =

disability; SW = spike and waves; Sz

phenytoin;

mesuximide; OXC = oxcarbazepine; PB = phenobarbital; PHT =

midazolam; MSX

rufinamide; ST = sulthiame; STP = stiripentol; TPM = topiramate; VGB = vigabatrin; VNS = vagal nerve stimulation; VPA = valproate; ZNS = zonisamide.

ketogenic diet; LCM = lacosamide; LTG = lamotrigine; LEV = levetiracetam; MDZ

intravenous immunoglobulins; KD

gabapentin; IVIG
pyridoxal phosphate; RGB = retigabine; RUF
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epilepsies, mutations were missense in 45, early stop
codons in six, frameshift in five (both predicting truncated
proteins), and altered splice-sites in two. All non-missense
mutations occurred in children with seizure onset beyond
the first year of life. In children with intellectual disability
or autism without epilepsy, mutations were missense
(n=38), frameshift (n=7), nonsense (n=38), splices-site
(n=35) or in-frame deletions (17 = 2). Twenty-eight recurrent
mutations were observed (Table 5), and some of them were
associated with specific phenotypes.

The A263V variant (de novo) has previously been
described in patients with benign neonatal/infantile seizures
and childhood onset episodic ataxia (Liao et al., 2010a;
Johannesen et al., 2016; Schwarz et al., 2016). However,
a twin pair with the same mutation was identified to have
Ohtahara syndrome, one of them being deceased, and the
other having severe intellectual disability (Touma et al.,
2013). Furthermore, we detected a new case with this mu-
tation (Patient 34, de novo), a male who suffered from
severe encephalopathy with early infantile epilepsy. He
died at the age of 13 years due to status epilepticus.

The R853Q variant was found in nine independent pa-
tients, six of whom were previously published and three
unpublished (Patients 46, 50 and 56) (Allen et al., 2013;
Nakamura et al., 2013; Samanta and Ramakrishnaiah,
2015; Li et al., 2016). Six of these patients presented
with West syndrome at 11-13 months of age, all were se-
verely intellectually disabled, and most had intractable
seizures.

The R1319Q variant was previously reported in three
different families with BFIS (Berkovic et al., 2004), while
we found it twice (Patients 31 and 36) occurring de novo in
patients with encephalopathy with early infantile epilepsy.
In line with the previously reported cases, however, the two
patients became seizure-free.

Ten mutations were found at amino acid position 1882,
with variable substitutions. R1882G resulted in benign in-
fantile seizures with late onset episodic ataxia in two cases,
and was shown to cause a gain-of-function (Schwarz et al.,
2016). In contrast, R1882Q (Patient 19) (Carvill et al.,
2013; Howell et al., 2015; Trump et al., 2016), R1882L
(Baasch et al., 2014) and R1882P (Patient 41) resulted in
severe phenotypes with intellectual disability.

Functional studies

Electrophysiological analyses were performed and com-
pared to the wild-type channel for four of the newly iden-
tified Na,1.2 missense mutations (for location see Fig. 3A)
to correlate their functional effects to the time of onset of
disease, the severity of the epilepsy, and the treatment re-
sponse. We chose the four mutations on the following cri-
teria: two were associated with different types of early
infantile encephalopathy with epilepsy (one with a clear
clinical response to SCBs, and one with a very severe, phar-
macoresistant phenotype), the other two with different
types of late onset epilepsies and worsening of the seizures
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Table 4 Clinical characteristics of the previously unpublished patients: intellectual disability and/or autism without

epilepsy
Patient Mutation/ EEG MRI Cognition onset/ Neurological Additional Age at
inheritance follow-up features features follow-up

67 K 1387Sfs “4/de novo NA NA MD N ASD 5y4m
68 R1435"/de novo N T2H SD N ASD, early puberty 7y8m
69 TI711Lfs'8/de novo Slowing N SD Hypotonia Rett-like, ASD 9y8m
70 G|1744E/de novo N N MD N ASD 4y

71 c.386 +2T > C/de novo NA NA MD NAV Episodic ataxia, ASD 13y

ASD = autism spectrum disorder; m = months; MD = moderate intellectual disability; N = normal; NA = not applicable; NAV = not available; SD = severe intellectual disability;

T2H = T,-hyperintensities; y = years.

upon application of SCBs. In detail, mutation F1597L was
selected from a female with severe EIMFS (Patient 26) in
whom the EEG suppression burst pattern resolved
promptly upon phenytoin treatment. V423L recurred in
two children with Ohtahara syndrome (Patients 10 and
33), both showing a peculiar severe phenotype with a
high pharmacoresistance including lack of response to
one or more SCBs (Table 1). G899S was selected from a
child (Patient 38) with intractable infantile/childhood epi-
lepsy with tonic-clonic seizures and absences, and mutation
P1622S from a child with intractable myoclonic-atonic epi-
lepsy (Patient 52). In both, aggravation of seizures occurred
after introduction of oxcarbazepine and/or lamotrigine.

We found gain-of-function effects for the mutations
V423L and F1597L, whereas the mutations G899S and
P1622S showed loss-of-function effects (Fig. 3 and
Supplementary Table 2). The analysis of the V423L muta-
tion revealed a change in slope of activation (Fig. 3C and
Supplementary Table 2) as well as a doubling of the
window current and a dramatic increase in the persistent
sodium current compared with the wild-type (Fig. 3B, C
and F). For F1597L mutant channels, we observed a hyper-
polarizing shift of the activation curve (Fig. 3C), fast inacti-
vation time constants were significantly larger for mutant
channels (Fig. 3D) and recovery from fast inactivation was
accelerated (Fig. 3E and Supplementary Table 2).

In contrast, electrophysiological analysis of the mutations
G899S and P1622S revealed profound loss-of-function
changes. The most prominent change for P1622S mutant
channels was a significant hyperpolarizing shift of the fast
inactivation curve (Fig. 3C). The effect of the G899S mu-
tation on channel kinetics was not as pronounced as for
P1622S, consisting of a depolarizing shift and a slope
change of steady-state activation (Fig. 3C). Both mutations
thus predict a decrease of channel availability and mem-
brane excitability in neurons expressing mutant Na,1.2
channels, an effect that would be further enhanced by
SCBs. Functional consequences of known SCN2A variants
that have been reported in the literature are listed in
Supplementary Table 1.

Discussion

Our study of 71 new patients with SCN2A mutations and
additional 130 previously reported cases—including
a physiological characterization of some mutations and
existing functional data from the literature—reveal evidence
that there are two distinct groups among symptomatic
SCN2A mutation carriers with epilepsy. The first group is
represented by (i) early infantile epilepsy with onset before
3 months of age; (ii) missense mutations with gain-of-func-
tion effects of different severity with correlation to the se-
verity of the clinical phenotype; and (iii) a relatively good
response to SCBs. The second group is characterized by (i)
a later epilepsy onset, i.e. after 3 months of age; (ii) fre-
quent loss-of-function mutations (truncations and splice site
mutations, but also missense mutations with loss-of-func-
tion effects); and (iii) a relatively poor response to SCBs.
The phenotypic spectrum in the early onset group com-
prises B(F)NIS, Ohtahara syndrome, EIMFS and unclassi-
fied encephalopathies, whereas the late onset cases include
West syndrome, Lennox-Gastaut syndrome, myoclonic-
atonic epilepsy, and focal epilepsies with an ESES-like pic-
ture. A third, smaller group is represented by (i) intellectual
disability and/or autism without epilepsy; and (ii) frequent
loss-of-function mutations (truncations).

In the benign end of the spectrum, both familial and de
novo mutations are found. These patients are characterized
by a normal cognitive development and self-limited epilepsy
with cessation of seizures mostly during the first year of
life. Seizure semiology shows considerable variation, the
typical ‘clustering’ is not always present, and family history
may be negative due to the presence of de novo mutations.
Seizures may be initially difficult to treat: in our cohort of
unpublished patients, seizures were initially drug-resistant
in 6/9 children (as discussed further below). However,
EEG might help to rule out a severe epileptic phenotype,
showing typically a normal background activity with or
without multifocal spikes, but never a suppression burst
pattern. After cessation of neonatal/infantile seizures, five
children developed episodic ataxia and pain (Liao et al.,
2010a; Johannesen et al., 2016; Schwarz et al., 2016).

The group with encephalopathy and epilepsy is the lar-
gest among the SCN2A carriers; 69% of the cohort falls

6102 YoJe|\ 2z uo 1sanb Aq £/4860€/91€ L/S/0Y | AOBISHE-8Jo1E/UIBIG/WO0 dNO"DIWSPEsE//:SARY WO} POPEojUMOd



SCN2A: phenotypes and treatment

A Encephalopathy with early infantile onset (< 3 m)
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Encephalopathy with infantile/childhood onset (z 3 m)
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Figure 2 Treatment effects on epileptic seizures in patients with SCN2A-related encephalopathies. (A) Number of treated patients
and their seizure outcome according to the judgement of the treating physician (purple = seizure free; light purple = seizure reduction; open

bar = no effect) that have been treated with different AEDs. Only effects of AEDs that have been used in more than three patients are shown. (B)
Effects of treatments with specific SCBs on seizures as a function of the age of onset of the epilepsy in days. Each dot represents one treatment
period with the respective SCB of one patient. Squares in the lamotrigine graph represent a combination of lamotrigine with additional AEDs.
Patient 23 has been excluded for carbamazepine, as the seizure freedom correlated with phenytoin treatment. Lines represent linear regressions
highlighting the dependence of treatment effects with SCBs on age of onset of the epilepsy. Only for phenytoin the slope was significantly different

from O (phenytoin: P = 0.03; carbamazepine: P = 0.06; oxcarbazepine:

P = 0.43; lacosamide: P = 0.50; lamotrigine: P = 0.66; zonisamide: P = 0.52).

benzo = benzodiazepines; CBZ = carbamazepine; ESM = ethosuximide; KD = ketogenic diet; LCM = lacosamide; LTG = lamotrigine;
LEV = levetiracetam; OXC = oxcarbazepine; PB = phenobarbital; PHT = phenytoin; RUF = rufinamide; ST = sulthiame; TPM = topiramate;

VGB = vigabatrin; VPA = valproate; ZNS = zonisamide.

into this category (Fig. 1). Half of those patients had a
seizure onset in the early infantile period (<3 months). In
the late onset group, seizure onset was usually before the
age of 4 years (only five patients had a later seizure debut).

Fifty-four of the 139 children had an identifiable epileptic
syndrome (32%). In the early infantile group, Ohtahara

syndrome (n=18) and EIMFS (n=13) constitute the
most important specific phenotypes. Whereas Ohtahara
syndrome was the first syndrome to be reported in
SCN2A-related encephalopathies, EIMFS was only recently
recognized (Howell et al., 2015). In EIMFS, KCNT1 mu-
tations have been reported as the most common underlying
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Table 5 Recurrent mutations

Mutation Frequency % (n cases) Phenotypes
Mi36l 0)) EE, EIMFS
V213D 1 (2 EOEE
V261M I () BNS
A263VIT 35 (7) BNS, EE, OS
V423L 1 (2 oS
V430Q/G/A 1.5 (3) BFIS, OS
N503K fs 1 (2) ID

R853Q 45 (9) WS, EE, LGS
R856L/Q 1 (2) OS,EIMFS
G882R/E 1 (2) EIMFS
K905N 1 (2) EE

F928C 1 (2) EIMFS, EE
R937C 1 (2) ID

C595" I () ASD
E999V/K 3 (6) EIEE, OS, EOEE
GloI3" I (2) ASD
1021Y" 1 (2 LGS, EE
EI211K 1 (2) WS

V1282F 1 (2) Schizophrenia
RI1319Q/W 3 (6) BFIS, WS, EE
V1326V/D 1 (2) EIMFS, OS
S1336Y 1.5 (3) oS

L1342P 2.5 (5) EOEE, WS
R1435" I () ASD
QI531K 1 (2 BFNS
TI623N 1 (2 OS, EE
R1629L/H 1 (2) EE
R1882G/Q/L 5 (10) BIS, OS, EE

ASD = autistism spectrum disorder (without seizures); BFIS = benign familial infantile
seizures; BIS = benign infantile seizures; BNS = benign neonatal seizures; EE = epileptic
encephalopathy; EIEE = early infantile epileptic encephalopathy; EIMFS = epilepsy of
infancy with migrating focal seizures; EOEE = early onset epileptic encephalopathy;
ID = intellectual disability (without seizures); LGS = Lennox-Gastaut syndrome;

OS = Ohtahara syndrome; WS = West syndrome.

genetic cause so far (Barcia ef al., 2012; Ohba et al., 2015).
In KCNT1-related EIMFS, the prognosis seems to be uni-
formly poor, and affected children show severe disability
with ongoing seizures during follow-up (Barcia et al., 2012;
Ohba et al., 2015). In our SCN2A cohort, 2/5 patients with
EIMFS became seizure-free at the age of 2 and 12 months
with vigabatrin and phenytoin, respectively, and showed
mild intellectual disability. Thus, prognosis seems to be
more favourable in SCN2A-related EIMFS compared to
those caused by KCNT1 mutations.

Epilepsies with onset beyond the early infantile period are
increasingly recognized in SCN2A-related disorders. In par-
ticular, West syndrome has recently emerged as the most
important specific phenotype, accounting for 16 patients so
far. Of note, one recurring mutation (R853Q), which has
been found in nine cases so far, is frequently associated
with West syndrome (six cases), and should therefore be
considered in the diagnostic work-up of children with West
syndrome.

The intellectual disability/autism group without epilepsy
is most likely an underestimate of the actual number of

M. Wolff et al.

cases, since it is not common practice in all countries/hos-
pitals to perform genetic testing in patients with intellectual
disability and/or autism without seizures. This group of
patients represents 16% of the cohort.

The relative frequency of the disease groups as repre-
sented in Fig. 1A for the newly identified cases with epi-
lepsy and in Fig. 1B for all cases probably contains biases,
as (i) benign neonatal-infantile epilepsies were the first
entity in which SCN2A mutations were detected suggesting
a relative over-representation of those and may be also the
severe early onset cases in the literature; and (ii) since cases
without epilepsy are probably underdiagnosed.

Genotype

Recurrent mutations are seen both in the benign and severe
end of the spectrum (Table 5). However, even with the
same mutation, a quite large phenotypic variance is
observed. A remarkable phenotype was found for R853Q
mutation carriers in whom 6/9 were affected by West syn-
drome. Furthermore, three of the patients with an A263V
mutation showed a BNIS phenotype with late onset epi-
sodic ataxia, while three others with the same mutation
had more severe phenotypes. Thus, both the mutation
itself and other genetic or environmental factors contribute
to the individual phenotype.

Interestingly, we found only missense mutations in the
early onset epilepsies, whereas truncations, splice-site and
nonsense mutations were solely seen in the epilepsies with a
later onset and in the group of cases without epilepsy. This
observation, along with the functional effects described in
the results section and discussed below, could have impli-
cations for treatment in these two major groups of SCN2A
patients. Supplementary Table 1 provides an overview of
all known SCN2A mutations, the associated clinical pheno-
types and known functional consequences.

Prevalence

We estimated the frequency of SCN2A mutations causing
the reported phenotypes in the Danish population to be 1/
78 608. This number will most likely be an underestimate.
There is not a strong tradition for a systematic genetic
screening of patients with isolated autism or intellectual
disability, thus there might be a recruitment bias towards
patients with epilepsy.

Seizure outcome and treatment
effects

In B(F)NIS families, seizures are reported to be controlled
by AEDs (Berkovic et al., 2004; Striano et al., 2006;
Herlenius et al., 2007). In the unpublished cohort, how-
ever, many patients were resistant to various AEDs, includ-
ing phenobarbital, topiramate, levetiracetam and valproate,
whereas SCBs (especially oxcarbazepine and phenytoin),
were completely or partially effective in 6/9 cases, suggest-
ing a specific effect of SCBs in this subgroup. However, and
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Figure 3 Functional studies reveal pronounced gain-of-function changes for the V423L and FI597L mutations and loss-of-
function changes for the P1622S and G899S mutations. (A) Schematic of the human Na,|.2 a-subunit together with 3, and B, subunits
showing the locations of the four functionally studied mutations (V423L green square; FI597L blue diamond; G899S orange inverted triangle;
P1622S red triangle). (B) Representative current traces of whole-cell Na™ currents recorded from tsA201 cells transfected with either Na, 1.2
wild-type or mutant channels. (C) Voltage dependence of steady state Na™ channel activation and inactivation revealing a significant depolarizing
shift of the activation curve for G899S (loss-of-function) as well as a significant hyperpolarizing shift of the inactivation curve for P1622S (loss-of-
function) in comparison with the wild-type. Lines represent fits of Boltzmann functions. (D) Voltage dependence of the fast inactivation time
constant for wild-type and mutant channels revealing a slowing of fast inactivation for FI1597L and an acceleration for P1622S. (E) The time course
of recovery from fast inactivation determined at — 100 mV showed significant changes between wild-type and mutant channels. F1597L mutant
channels showed a significantly faster recovery (gain-of-function), whereas P1622S mutant channels showed a significant slowing of the recovery
from fast inactivation compared to wild-type channels (loss-of-function). Lines represent fits of exponential functions yielding the time constant
Trec- (F) Voltage dependence of the persistent sodium current showing a large increase for V423L compared to the wild-type. Current amplitudes
recorded at the end of a 70-ms depolarization were normalized to the peak current amplitude (steady state current/initial peak current). Shown
are means =+ SEM.
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as known from previous studies, three patients became seiz-
ure-free without any AEDs, which is part of the natural
history of these patients. Thus, the effect of SCBs in these
patients should be interpreted with some caution, although
we observed a clear correlation between introduction of the
drugs and seizure freedom.

Apart from B(F)NIS, we found a different pattern of seiz-
ure outcome and AED effects in our cohort according to
the age at seizure onset. Of all patients with encephalop-
athy and epilepsy onset <3 months, 17/28 (61%) became
seizure-free, 10 of them during SCB treatment, mainly with
phenytoin (7 =8), whereas other standard AEDs (e.g.
phenobarbital, levetiracetam) were largely ineffective.
Interestingly, in five children recurrent declines of pheny-
toin plasma levels resulted in prompt seizure relapses that
were reversible after adjusting the phenytoin dosage. These
observations underline the beneficial effect of phenytoin on
seizure activity in these patients.

To date, there are only few reports on treatment response
in SCN2A-related epilepsies. In the series of Nakamura
et al. (2013) on 15 children with early onset seizures, epi-
lepsies were described as intractable in 12 of 15 cases.
Phenytoin was tried in five children with seizure onset be-
tween 1 day and 6 weeks of age, and showed partial effects
in four of them. Zonisamide showed some effects in 4/6
children. Two children became seizure-free with lamotrigine
at the age of 6 months and 6 years, respectively. Howell
et al. (2015) reported improvement of seizure control in 11/
15 patients with early seizure onset, phenytoin was reported
to be partially effective in seven children with neonatal seiz-
ure onset. Sawaishi et al. (2002) described a striking effect
of lidocaine, a prototypic sodium channel blocker, in a pa-
tient with Ohtahara syndrome due to a SCN2A mutation
(Sawaishi et al., 2002; Ogiwara et al., 2009).

Taken together, patients with early onset epilepsies were
difficult to treat but responded relatively well to SCBs, in
particular to phenytoin in appropriate dosages. The high
dosages needed to control seizures completely might not
have been reached in many patients who did not become
seizure-free.

In contrast, only 10/29 (34%) children with infantile/
childhood epilepsy became seizure-free, and seizures
mostly did not respond to SCBs. In the nine children
with West syndrome, seizures and hypsarrhythmia in the
EEG were mostly resistant to standard treatment including
steroids and ketogenic diet. Nakamura et al. (2013) re-
ported on eight children with West syndrome in their
series. All were intractable, suggesting that SCN2A-related
West syndrome is particularly difficult to treat. However,
some case reports describe treatment responses to ACTH
(Nakamura et al., 2013), topiramate (Ogiwara et al., 2009;
Sundaram et al., 2013; Samanta and Ramakrishnaiah,
2015) and transient effects of prednisolone (Matalon
et al., 2014).

Seizure worsening associated with SCB treatment was
observed in seven children of our cohort, all of whom
had seizure onset beyond the age of 3 months.

M. Wolff et al.

Hackenberg et al. (2014) reported an increase of seizure
frequency related to carbamazepine treatment in a child
with seizure onset at 3 months of age. Howell et al.
(2015) reported the appearance of myoclonus with vigaba-
trin and lamotrigine in one child. SCBs are known to ag-
gravate seizure activity in epileptic syndromes that are
caused by loss-of-function mutations in Na,1.1 channels,
e.g. Dravet syndrome, putatively because they further
reduce sodium channel activity in inhibitory neurons
(Brunklaus ef al., 2014) expressing Na,1.1 as the major
sodium channel (Catterall, 2014). As discussed below, a
similar mechanism may apply for loss-of-function muta-
tions in Na,1.2 channels.

The statistical x* test confirmed our impression of differ-
ential treatment effects of SCBs and non-SCBs in early
versus late onset encephalopathies with epilepsy. The late
onset cases responded significantly better to non-SCBs than
the early onset ones, which may indicate that the epilepsy
in the early onset cases is more difficult to treat. This ob-
servation even strengthens the finding of a significantly
better response to SCBs of the early onset compared to
the late onset cases, and suggests that the higher seizure
freedom rate of the early onset group (61%, compared to
only 34% of the late onset group) is the likely consequence
of a specific pharmaco-response to gain-of-function SCNA2
mutations (see discussion below on functional effects).

In summary, SCBs seem to have positive effects on seiz-
ures in early infantile onset epilepsies, but are not effective
or can even worsen seizure activity in epilepsies with onset
at 3 months of age or later. However, these conclusions
have to be taken with care, as the natural history of
these conditions is unknown, our observations are purely
retrospective and the exact duration from AED introduc-
tion to seizure freedom was not clear in all cases.

Functional studies and their pharma-
cological and neurophysiological
interpretation

Out of the diversity of SCN2A mutations that have been
identified until now, only a small number have been studied
functionally. SCN2A mutations can lead to either aug-
mented or reduced Na,1.2 activity (Kamiya et al., 2004;
Scalmani et al., 2006; Xu et al., 2007; Ogiwara et al.,
2009; Liao et al., 2010a, b; Lossin et al., 2012; Rauch
et al., 2012; Lauxmann et al., 2013; Sundaram et al.,
2013; Codina-Sola et al., 2015; Schwarz et al., 2016).
Here, we functionally analysed four additional mutations,
two of which were identified in patients suffering from en-
cephalopathy with early infantile onset epilepsy. For these
mutations (V423L and F1597L), a clear gain-of-function
effect was found (Fig. 3). V423L particularly showed a
tremendous increase in persistent sodium current, probably
explaining the extremely severe phenotype with highly
drug-resistant Ohtahara syndrome in both children affected
by this mutation. We hypothesize that this persistent
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current was too large to be sufficiently reduced by SCBs in
clinically relevant dosages. F1597L caused an accelerated
recovery from fast inactivation, and the patient showed
an EIMFS phenotype with a prompt response to phenytoin
treatment. In contrast, we have shown clear loss-of-func-
tion effects for two mutations found in children with in-
fantile/childhood epilepsy (G899S and P1622S). The
phenotype consisted of tonic-clonic seizures and absences
in one and myoclonic-atonic epilepsy in the other child,
which was clearly different from the other two mutations.
This difference was equally seen with regard to the treat-
ment response, which showed seizure aggravation upon
SCB treatment in both cases.

In previous studies, several disease-causing mutations in
SCN2A have been functionally analysed. In children with
severe early onset epilepsies, gain-of-function mutations
were described (Ogiwara et al., 2009; this study, see
above). Missense mutations from patients with B(F)NIS
have been characterized to cause a gain-of-function
(Scalmani et al., 2006; Xu et al., 2007; Liao et al.,
20104, b; Lauxmann et al., 2013; Schwarz et al., 2016)
with one of these mutations (A263V) also causing severe
epilepsy in some cases (see above). Few studies also indi-
cated some biophysical features indicating a loss-of-func-
tion (Scalmani et al., 2006; Misra et al., 2008); however,
studies in neurons by Scalmani ez al. (2006) suggested a net
gain-of-function with increased excitability for two such
cases so that the main effect seems to be a gain-of-function
(R223Q and R1319Q), matching the effective SCB treat-
ment of patients carrying the R1319Q mutation. These dis-
tinct effects of the same mutation analysed in neuronal
versus non-neuronal cells could be caused by post-transla-
tional modifications, phosphorylation, trafficking and pro-
tein—protein interactions (such as with B-subunits, which
we also used in our study) of the channels which can be
quite different in neuronal cells and heterologous expres-
sion systems (for review see Shao et al., 2009). It has been
shown for mutations in Na,1.1 that—besides the B-sub-
units as the closest interacting partners of a-subunits—
ankyrin, calmodulin or other endogenous proteins can
also have essential roles for intracellular trafficking and
functional expression (Rusconi et al., 2007; Cestele et al.,
2013). Such effects may also apply for the mutations we
studied here in tsA201 cells. Furthermore, modifier genes
might affect the clinical severity and the variability of
phenotypes seen in epilepsy patients with gain-of-function
SCN2A mutations (Bergren et al., 2005; Hawkins and
Kearney, 2016).

In contrast to the observed gain-of-function effects, mis-
sense loss-of-function and nonsense mutations have been
identified in patients with later onset epilepsies, although
two mutations also showed a hyperpolarizing shift of the
activation curve as a gain-of-function feature (Kamiya
et al., 2004; Ogiwara et al., 2009; Lossin et al., 2012).
Finally, autism spectrum disorder without seizures was
also associated with loss-of-function mutations (Kamiya
et al., 2004; Rauch et al.,, 2012; Sanders et al., 2012;
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Carvill et al., 2013; Codina-Sola et al., 2015; D’Gama
et al., 2015; Howell et al., 2015; Carroll et al., 2016;
Horvath et al., 2016; Li et al., 2016; Trump et al., 2016)
(Supplementary Table 1).

These findings strengthen the hypothesis that there is a
link between gain-of-function SCN2A mutations, early
onset epilepsy, and effectiveness of SCBs on the one
hand, and loss-of-function mutations, later onset epilepsy,
and ineffectiveness of SCBs on the other hand. Gain-of-
function versus loss-of-function mutations affecting the
neuronal excitability of different neurons during specific
developmental stages might explain the variation in seizure
onset and the response to SCBs in early infantile syn-
dromes. Early in development, the Na,1.2 channel is
highly expressed at nodes of Ranvier and axon initial seg-
ments and is partially replaced during development by the
Na,1.6 channel (Kaplan et al., 2001; Liao et al., 2010b),
which could be confirmed in adult human hippocampal
brain slices (Liao et al., 2010b). Na,1.2 channels are there-
fore considered to contribute to action potential generation
and propagation and influence the axonal firing frequency
during early development. Hence, mutations causing gain-
of-function effects can alter the characteristic firing patterns
of Na,1.2-expressing neurons and cause hyperexcitability,
which can be dampened by SCB treatment and thus im-
prove seizure outcome. In contrast, loss-of-function muta-
tions cannot drive Na,l1.2-expressing cells into
hyperexcitability during early development, and therefore
patients may not exhibit early onset seizures. However,
loss-of-function mutations seem to lead to severe epileptic
phenotypes later in development. In the more mature brain,
unmyelinated axons express the Na,1.2 channel, such as
mossy fibres projecting from the hippocampal dentate
gyrus into the CA3 region (Kaplan er al., 2001; Liao
et al., 2010b). The most prevalent targets of mossy fibres
apart from CA3 pyramidal cells are GABAergic parvalbu-
min-positive interneurons. Mossy fibres contact inhibitory
basket cells ~50 times more frequently than pyramidal cells
mediating a powerful feedforward inhibition (Acsady et al.,
1998). Therefore, a reduced excitability of dentate granule
cells due to Na,1.2 loss-of-function mutations can result in
CA3 hyperexcitability, which can spread to subsequent hip-
pocampal regions and further. A treatment with SCBs can
therefore act in a similar way as hypothesized for loss-of-
function Na,1.1 mutations. Here, SCBs are predicted to
further reduce the activity of inhibitory neurons expressing
Na,1.1 as major sodium channel. Similarly, SCBs could
further reduce the activity of Na,1.2-expressing dentate
granule cells, which in turn would activate inhibitory neu-
rons less effectively. As mossy fibres are not the only
unmyelinated fibres within the brain, other unmyelinated
inhibitory neurons expressing Na,1.2 channels could also
contribute to neuronal hyperexcitability. Only parvalbu-
min-positive inhibitory neurons within the cortical layers
have been shown to be myelinated (Micheva et al.,
2016). Unmyelinated inhibitory neurons expressing
Na,1.2 channels are controlling the activity of excitatory
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neurons and provide feedforward inhibition (Kepecs and
Fishell, 2014). In early development, a reduced activity of
these inhibitory neurons due to Na, 1.2 loss-of-function mu-
tations could be of little or no consequence, as excitatory
Na,1.2-expressing neurons within the cortex also show
reduced excitability. As mentioned above, the Na,1.2 chan-
nel is partially replaced by the Na,1.6 channel at nodes of
Ranvier and axon initial segments during development, but
is still expressed in unmyelinated fibres, such as those from
inhibitory neurons. Additionally, the neonatal splice variant
of Na,1.2 has been shown to have a seizure protective role
during early development (Gazina et al., 2015). A reduced
excitability of unmyelinated cortical inhibitory neurons
later in development could therefore lead to hyperexcitable
cortical networks. A disruption of the excitatory/inhibitory
balance caused by SCN2A loss-of-function mutations can
therefore cause seizures and additionally underlie neuro-
psychiatric diseases and autism, reflected by a higher preva-
lence in patients with loss-of-function mutations and late
onset phenotypes in our cohort.

In summary, our study reflects the large spectrum of
SCN2A-related disorders and identifies SCN2A mutations
as one of the most common genetic causes of epilepsy. We
have established two distinct groups with seizure onset
either before or after 3 months of age, which show pheno-
typic differences, gain-of-function versus loss-of-function
Na,1.2 abnormalities and a likely related differential re-
sponse to treatment with SCBs.
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